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Abstract. The random replicator model with interspecies coupling strengths prescribed by the competitive
exclusion principle – the Hebb rule – is studied analytically in the presence of fast noise that describes the
flow of migrants between the ecosystem and the outer world. The stochastic dynamics leads to stationary
states distributed according to the Gibbs distribution permitting thus an equilibrium statistical mechanics
analysis. We find that a discontinuous phase transition separates a regime of strong competition, and
consequently of low diversity, from more cooperative regimes. The statistical analysis is carried out for the
annealed scheme, for which the evolutionary and ecological timescales coincide, as well as for the quenched
scheme, for which the features that identify the species are fixed.

PACS. 75.10.Nr Spin-glass and other random models – 87.10.+e General theory and mathematical aspects
– 87.23.Cc Population dynamics and ecological pattern formation

1 Introduction

Ecology was one of the first disciplines of biology to es-
pouse mathematical modeling as a means to attain a com-
prehensive knowledge of nature (see [1] for a historical
account of the mathematical thinking in population ecol-
ogy). Following this tradition, in 1970 MacArthur intro-
duced a minimum principle in ecology, analogous to the
principle of least action of mechanics, by showing that
a special kind of competition equation — the noiseless
version of equation (2) with symmetric interspecies in-
teractions — minimizes a quadratic expression, and then
used this finding to interpret species packing and com-
petitive equilibria [2]. More recently, this idea was taken
up and considerably refined through the use of techniques
borrowed from the statistical mechanics of disordered sys-
tems. These modern tools permitted the analytical study
of very large ecosystems in which the coupling strengths
between species are assigned randomly, the so-called ran-
dom replicator model [3–5].

For large ecosystems, i.e. for communities composed
of many different species i = 1, . . . , N , an analytical sta-
tistical approach is more insightful than the direct nu-
merical solution of the dynamical equations, since it is
practically impossible to specify fully, not to mention to
explore, the space of interaction strengths Jij , which mea-
sure how the encounter between ith and jth species af-
fects the growth of species i. Moreover, the uncertainty
and complexity of the interspecies interactions in nature
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suggest that the Jijs be considered as random variables.
Nevertheless, to assume simply that these couplings are in-
dependent, Gaussian distributed random variables is not
good enough [3] since in doing so the model fails to account
for the possibility of an underlying, non-random structure
of the interspecies interactions, which might explain coop-
erative behavior as cross-feeding and symbioses as well as
the competitive behavior that results from the exploita-
tion of the same niche by different species [6]. An easy
solution to this problem is given by assuming that the
pairwise species interactions are regulated by the degree
of complementarity between species, i.e., by the number
of features or characters that distinguish the interacting
species [7]. By assigning the defining characters of each
species at random, the model retains the randomness in-
gredient of the original Gaussian model, while accounting
for an explicit, biologically motivated structure for the in-
terspecies interactions.

Explicitly, we assume that each species is characterized
by a set of p phenotypic characters, µ = 1, . . . , p and that
the resulting interaction between a pair of species, say Jij ,
depends on the presence or not of the same character in
both species, being given by the rule

Jij =
1
N

p∑

µ=1

ξµ
i ξµ

j i �= j (1)

where the ξµ
i s are independent random variables that take

on the values ±1 with equal probability. If species i ex-
hibits character µ then ξµ

i is set to 1; otherwise it is set
to −1. Note that equation (1) is the celebrated Hebb rule,
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extensively studied in the 1980s in the context of attrac-
tor neural networks [8]. In line with the competitive ex-
clusion principle [6], which asserts that two species living
together cannot occupy the same ecological niche, we as-
sume that the larger the number of features shared by
a pair of species the stronger the competition between
them, so that Jij > 0 corresponds to pairs of competing
species whereas Jij < 0 to pairs of cooperating species.
In addition, according to equation (1), for large p most of
the interspecies interaction strengths are very small, cor-
responding to the situation in which the species live on
different resources or occupy different niches. While com-
petitive interactions seem to be the norm in macroscopic
ecosystems, cooperative interactions such as cross feeding
(i.e., the ability of species to use metabolites excreted by
other species) are acknowledged as a crucial mechanism
to generate and maintain diversity in microbial, mainly
bacterial, ecosystems [9]. As a matter of fact, the mathe-
matical formalism of the random replicator model is very
well suited to describe evolution experiments on microbial
cultures carried out in chemostatic conditions, in which
the total concentration of individuals is regulated to a
constant level via some flux control mechanism.

Strictly, taxonomists define species through the iden-
tification of a reliable group of characters, i.e., characters
that are exhibited by all members of the species to be de-
fined but not by members of other species [10]. Here we de-
fine a species by a list of p identifiable morphological char-
acters that a particular group of individuals may or may
not possess. In particular, by assuming that the number
of characters is extensive, i.e., p = αN , we guarantee that
each species is assigned a unique set of characters since
the probability that two species are assigned the same set
of characters vanishes as 2−αNN2 in the limit of large N .
The use of a complementarity principle in the form of an
overlap between binary vectors that identify the species,
equation (1), is also a central feature of the Tangled Na-
ture model [11,12]. However, analogously to the models of
adaptive walks on complex fitness landscapes [13,14], the
Tangled Nature model is an individual-based model that
can be studied chiefly through computer simulations.

The study of the zero-temperature statistical proper-
ties of the random replicator model with interspecies in-
teractions given by the Hebb rule has revealed a discontin-
uous phase transition between a cooperative and a com-
petitive regime when the ratio α between the number of
features and the number of species reaches a certain value
αc < 1/2. As in the original Gaussian model, no similar
phenomenon is observed for α > 1/2 [15,16]. This thresh-
old phenomenon, however, was shown to be fragile against
the presence of static noise of vanishingly small intensity
or, equivalently, of any non-linear distortion of the Hebb
rule [16]. In this contribution we probe the robustness of
the phase transition to the presence of the fast noise that
results from considering the random replicator model at
nonzero temperature. Rather unexpectedly, we find that
this kind of noise actually promotes the phase transition,
which can take place even for α > 1/2 at nonzero tem-
perature. A significant effect of the fast noise is the spon-

taneous generation of species, which is interpreted as the
flow of migrants to the ecosystem under consideration.

The remainder of the paper is organized as follows. In
Section 2 we present the model and discuss in detail the
biological interpretation of the control parameters, giving
emphasis to the interpretation of the fast noise term. In
Section 3 we study the case in which the evolutionary
and ecological timescales are the same. This is known as
the annealed regime in statistical physics. We note that
the species features change in an evolutionary timescale
while the species density in an ecological one. The other
extreme case, in which the species features are kept fixed,
known as the quenched regime is studied in Section 4.
The organization of the ecosystem for the quenched case
as inferred by the analysis of the probability distribution
of the species concentrations is considered in Section 5.
Finally, in Section 6 we present our concluding remarks.

2 Model

We assume that the abundance of individuals of species
i = 1, . . . , N in the ecosystem, described by the real-valued
quantity xi ∈ [0,∞), is governed by the generalized repli-
cator equation,

dxi

dt
= xi (Fi − φ) + ζi (t) (2)

where Fi = −∑
j Jijxj can be identified with the fitness

of species i and φ is a Lagrange multiplier that enforces
the constraint

N∑

i=1

xi = N (3)

for all t. We assume in addition that there is a reflecting
barrier at x = 0. Here we have introduced the Gaussian
white noise ζ with zero mean and correlation function

〈ζi (t) ζj (t′)〉 = 2Tδij δ (t − t′) . (4)

Henceforth we will refer to the parameter T that mea-
sures the noise intensity as the temperature. In the case
of symmetric interactions and for zero temperature, the
asymptotic regime of equation (2) can be fully described
by looking at the maxima of the fitness functional

F ({xi}) = −
∑

i,j

Jijxixj (5)

and so it can be shown that the only stationary states are
fixed points [17]. In addition, we note that in this case
the Lagrange multiplier in equation (2) is interpreted as
the mean fitness of the ecosystem, i.e., φ = 1

N

∑
i xiFi.

In the case of nonzero temperature, the long time regime
(t → ∞) of equation (2) leads to the Gibbs probability
distribution

W({xi}) =
1
Z

δ

(
N −

∑

i

xi

)
exp [βF({xi})] (6)
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where

Z =
∫ ∞

0

∏

i

dxi δ

(
N −

∑

i

xi

)
exp [βF ({xi})] (7)

is the partition function and β = 1/T is the inverse tem-
perature.

The dynamics of ecosystems in general and Lotka-
Volterra models in particular have been studied in the
presence of white, as well as colored, multiplicative noise
(see, e.g., [18–21]) revealing a variety of intriguing phe-
nomena such as temporal oscillations, intermittency and
stochastic resonance. The noise is said multiplicative be-
cause it enters the dynamic equations through the term
xiζi, describing thus random variations in the reproduc-
tion factors of the species members. In this contribution
we consider additive noise instead, the main advantage
of which is to produce a stationary regime described by
the Gibbs distribution, thus permitting the use of sta-
tistical mechanics tools to derive the properties of the
ecosystem. In addition, the additive noise term in equa-
tion (2) has a meaningful biological interpretation, as the
spontaneous generation of species can be interpreted as
the random flow of migrants between some source habi-
tat and the ecosystem under analysis. We note also that
plant regrowth equations in certain plant-herbivore mod-
els do exhibit a rate of spontaneous generation that play a
similar role as the additive noise ζ [22]. Strictly, the noise
is not simply additive since the Lagrange multiplier φ de-
pends on ζ as well. For instance, in the case of independent
species, i.e., Jij = 0 for all pair i, j we have φ = 1

N

∑
i ζi.

The constraint (3) that keeps the total concentration
of species in the ecosystem at a constant level does not
represent any serious limitation to our model (chemostat
cultures of microorganisms are usually grown under that
condition), since it can be easily shown that the replicator
dynamics for N species is equivalent to the Lotka-Volterra
equation for N − 1 species [17]. Finally, to prevent the
unbounded growth of any single species — a possibility in
the limit N → ∞ — we introduce a quadratic damping
term that accounts for the self-limitation in the growth of
each species. This is achieved by setting Jii = u > 0 for
all i. With this last ingredient the fitness functional (5)
becomes

F ({xi}) = − 1
N

∑

i�=j

p∑

µ=1

ξµ
i ξµ

j xixj − u
∑

i

x2
i . (8)

To rid our results of the dependence on a specific realiza-
tion of the couplings between species, we must carry out
an average over the probability distribution of the random
variables ξµ

i . The way this average is performed depends
on our assumptions on the timescales of the changes in
the species concentrations xi (ecological scale) and in the
species features ξµ

i (evolutionary scale). Here we consider
the two extreme situations. The first is the annealed case
in which we assume that the feature values change as fast
as the species concentrations. In this case we must average
the partition function directly. The second is the quenched
case in which the species features are kept fixed as the

species concentrations change according to equation (2).
Then we must average the logarithm of the partition func-
tion, which is usually done through the replica trick. This
involves considering n identical copies of the system and
then the limit n → 0 (see Sect. 4 for details). Interestingly,
intermediate situations between the annealed, which cor-
responds to n = 1, and the quenched options can also
be treated within the replica framework by exploring the
physical interpretation of the finite number of replicas n
proposed by Coolen et al. [23]. We shall pursue this re-
search line in a future contribution. In what follows we
will consider only the annealed and quenched cases.

3 The annealed case

The free-energy in this case is given by

−βfa = lim
N→∞

ln 〈Z〉 (9)

with Z given by equation (7). The notation 〈. . .〉 stands
for the average over the probability distribution of the
quenched random variables ξµ

i . In addition to being of in-
terest by its own as pointed out before, the calculation of
the annealed free energy has the advantage of being free
from any mathematical delicacies, such as those used in
the replica approach, and resulting in saddle-point equa-
tions relatively easy to solve numerically, while capturing
some singular features of the quenched model, especially
at nonzero temperature. We note, in particular, that the
annealed free-energy provides a rigorous lower bound to
the quenched free energy. Performing the average in equa-
tion (9) yields

〈Z〉 =
∫

dQdQ̂

2πi/N

dR̂

2πi/N
eN[R̂+Q(Q̂−βu)+G0+αG1] (10)

where

G0 = ln
∫ ∞

0

dx exp
(
−Q̂x2 − R̂x

)
(11)

G1 = ln
∫ ∞

−∞
Dz exp

(−βQz2
)

+ βQ (12)

and Dz = exp
(−z2/2

)
dz/

√
2π is the Gaussian measure.

In the thermodynamic limit, N → ∞, the integral (10)
is dominated by its value at the saddle-point where the
derivatives with respect to the three variables Q, Q̂, R̂
vanish. Only the parameter Q has a direct physical in-
terpretation, namely, it is proportional to the probabil-
ity that two randomly selected individuals belong to the
same species, a measure known as Simpson’s index in the
ecology literature [24]. Henceforth we will refer to Q as
Simpson’s index, though, strictly, the correct definition of
that index is Q/N . We note that Q is related to the Rényi
entropy [25]

Sγ =
1

1 − γ
ln

[
N∑

i

(xi/N)2
]

(13)
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Fig. 1. Simpson’s index Q in the annealed case for u = 1
and T as indicated in the figure. The lines end at α = αc, at
which Q = 2. There is no solution to the saddle-point equations
beyond αc.

for γ = 2 (this entropy reduces to the Shannon entropy
in the limit γ → 1). The other two parameters, R̂ and Q̂,
enter the calculations as Lagrange multipliers. The saddle-
point equations are easily derived, yielding

Q =
〈
x2

〉
a

(14)

1 = 〈x〉a (15)

Q̂ = β

(
u − α

2βQ

1 + 2βQ

)
(16)

where

〈
xk

〉
a

= e−G0

∫ ∞

0

dx xk exp
(
−Q̂x2 − R̂x

)
. (17)

Figure 1 illustrates the nontrivial dependence of Q on α.
For nonzero T , the parameter Q increases monotonously
with increasing α ≤ αc, where

αc = u

(
1 +

T

4

)
. (18)

At α = αc we have Q = 2, but we find that there is
no solution to the saddle point equations for α > αc. Of
course, the absence of solutions implies that in this regime
Q takes on its maximum value, Q → ∞. For T → ∞ we
find Q = 2, regardless of the values of the other control
parameters, while for T = 0 we find Q = 1 for α < αc = u
and Q = 2 at α = u, so there is a discontinuity at this
point. From the mathematical standpoint it is not difficult
to understand this behavior pattern. In fact, there are no
(finite) solutions to the saddle-point equations for α > αc

because Q̂ < 0 in this regime leading to the divergence of
the moments defined in equation (17). Moreover, there is
no divergence at αc at which Q̂ vanishes because the linear
term in the argument of the exponential in that equation
guarantees the convergence of the integrals.

More information on the organization of the species
in the ecosystem is obtained by looking at the proba-
bility that the abundance of a randomly chosen species,
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Fig. 2. Probability density that the abundance of a randomly
chosen species equals x in the annealed case for u = 1, α =
0.5 and T as indicated. The dashed line is the exponential
distribution e−x valid in the limit T → ∞.

say species j, is in the range (x, x + dx). This is given by
Pa(x)dx where

Pa (x) = 〈δ (x − xj)〉a
= e−G0 exp

(
−Q̂x2 − R̂x

)
. (19)

For T = 0 we find Pa = δ (x − 1) and in the limit T → ∞,
as well as for α = αc regardless the value of T , we find
Pa = e−x, which is consistent with Q = 2.

The interpretation of the saddle-point parameter Q
as the Simpson’s index allows us to distinguish between
three distinct regimes. The first is a cooperative or high-
diversity regime in which all species coexist and contribute
evenly to the ecosystem composition so that Q ≈ 1. The
second is a highly disordered regime of intermediate di-
versity, characterized by Q ≈ 2 in which the species inter-
actions play little role. Finally, the third regime is a com-
petitive or low-diversity regime in which the ecosystem is
composed predominantly of a few dominant species, cor-
responding to Q 
 1 (or Q → ∞ in the annealed case).
These same three regimes appear in the analysis of the
quenched case, as we will see next.

4 The quenched case

The other extreme, but perhaps more realistic, situation is
when the species features remain fixed and the only quan-
tities allowed to change are the species concentrations.
This is the quenched case which requires the calculation
of the average of the logarithm of the partition function.
The average free-energy density in this case is defined as

−βfq = lim
N→∞

1
N

〈ln Z〉 (20)

where the evaluation of the quenched average is carried
out through the replica method, which consists of calcu-
lating 〈Zn〉 for integer n, i.e., Zn =

∏n
a=1 Za and then

using the identity

〈ln Z〉 = lim
n→0

1
n

ln 〈Zn〉, (21)
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in which it is implicit the analytical continuation to n =
0 [26,27]. After standard algebraic manipulations (see,
e.g., [28]) we calculate 〈Zn〉, obtaining

〈Zn〉 =
∫ ∏

a<b

dqabdq̂ab

2πi/N

∫ ∏

a

dQadQ̂a

2πi/N

∫ ∏

a

dR̂a

2πi/N

× exp

[
N

(
−

∑

a<b

qabq̂ab +
∑

a

R̂a +
∑

a

QaQ̂a

)]

× exp

[
N

(
−βu

∑

a

Qa + G0 + αG1

)]
(22)

where

G0 = ln
∫ ∞

0

∏

a

dxa exp

[
−

∑

a

xa

(
R̂a + Q̂axa

)

+
∑

a<b

q̂abxaxb

]
(23)

and

G1 = ln
∫ ∞

−∞

∏

a

Dza exp

[
−

∑

a

Qaz2
a − 2β

∑

a<b

qabzazb

]

+β
∑

a

Qa. (24)

The relevant physical order parameters are

qab =
1
N

∑

i

〈〈xiaxib〉T 〉 a < b (25)

and

Qa =
1
N

∑

i

〈〈
x2

ia

〉
T

〉
(26)

which measure the overlap between a pair of stationary
states labeled by the replica indices a and b, and the over-
lap between the stationary state labeled by a with itself.
Here 〈. . .〉T stands for a thermal average taken with the
Gibbs distribution (6).

To proceed further we must calculate the integrals in
(22) by the saddle-point method in the thermodynamic
limit N → ∞. The saddle-point equations are obtained by
taking derivatives of the exponent of the integrand with
respect to all integration variables. In order to carry out
these calculations we must make some simplifying assump-
tion about the structure of the saddle-point parameters.

4.1 Replica-symmetric solution

The simplest guess is that the saddle-point parameters
are symmetric under permutations of the replica indices,
i.e., qab = q, q̂ab = q̂, Qa = Q, Q̂a = Q̂, and R̂a = R̂.
This prescription turns the evaluation of the integrals in

equations (23) and (24) into a trivial task, resulting in the
following replica-symmetric free energy density

−βfrs =
qq̂

2
− αβq

1 + 2β (Q − q)
+ Q

[
Q̂ − β (u − α)

]

+R̂ − 1
2

ln
(
Q̂ + q̂/2

)
− α

2
ln [1 + 2β (Q − q)]

+
1
2

ln (π/4) +
∫

Dz ln
[
eΞ2

z erfc (Ξz)
]

(27)

where

Ξz =
R̂ − q̂1/2z

2
(
Q̂ + q̂/2

)1/2
. (28)

In this framework the definitions (25) and (26) become

q =
1
N

∑

i

〈
〈xi〉2T

〉
(29)

Q =
1
N

∑

i

〈〈
x2

i

〉
T

〉
(30)

where the thermal average is now calculated using the
replica-symmetry prescription for the Gibbs distribu-
tion (6). The saddle-point parameters q, Q, R̂, q̂, Q̂ can be
obtained by solving the five coupled nonlinear equations
that result from extremizing the replica symmetric free-
energy with respect to each of them. It is a formidable
task to solve these equations numerically. We have ac-
complished that by replacing the parameters R̂ and Q̂ by

∆ = R̂/q̂1/2 and η = q̂1/2/2
(
Q̂ + q̂/2

)1/2

, respectively, in
order to reduce the dependence of Ξz from three to two
parameters only: Ξz = η (∆ − z). The trick to solve the
saddle-point equations is to consider η as a fixed, given
parameter and α as unknown. By doing so we can easily
reduce the five coupled equations to a single equation for
∆ which then can be solved using standard techniques.
By varying η we can find the solutions for different values
of α and hence draw graphs of, say, Q against α. The suc-
cess of this strategy depends on a rather technical detail,
which in fact is crucial to solve the saddle-point equations
in the annealed case as well. The difficulty is the numerical
evaluation of the expression Ξz − H (Ξz), where

H (Ξz) =
1√
π

e−Ξ2
z

erfc (Ξz)
, (31)

which appears when we take derivatives of the free en-
ergy (27) with respect to ∆ and η. To minimize numerical
errors in the case Ξz > 0 we use a routine based on Cheby-
shev fitting that returns the complementary error function
erfc with fractional error everywhere less than 1.2×10−7

[29]. For Ξz > 6, however, we must resort to the well-
known asymptotic expansion of the erfc [30], since that
routine is not sufficient to evaluate Ξz − H (Ξz) within a
reasonable precision requirement.

Figures 3 and 4 show the dependence on α of the re-
ciprocal of Q and of the susceptibility v ≡ Q − q > 0
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Fig. 3. Reciprocal of Simpson’s index as function of α for u = 1
and T as indicated in the figure. The dashed vertical line indi-
cates the point at which the thermodynamic phase transition
takes place. This phase transition disappears for T < 4.7. The
symbol • indicates the point where the replica-symmetric so-
lution becomes unstable.
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Fig. 4. Susceptibility v as function of α. The parameters and
conventions are the same as in Figure 3.

which, according to equations (29) and (30), measures
the fluctuations of the species concentrations around the
equilibrium value. We note that at zero temperature the
three solutions observed for certain ranges of α, that sig-
nal the existence of a phase transition, appear for u < 0.5
only [15,16] and disappear altogether when a vanishingly
small static noise is added to the Hebb interactions [16].
These figures demonstrate that the effect of fast noise is
the reverse – increasing the temperature actually enlarges
the many-solutions region. To decide which solution must
be chosen for a given value of α we must consider the free
energy of all them as illustrated in Figure 5 for a single
value of T . Note that only by inspection of this figure we
can distinguish clearly between the three solutions. The
point αc (T, u) at which the free energies of two of the
solutions intersects determines the location of the ther-
modynamic phase transition. The requirement that the
free energy changes continuously as one moves from one
solution to another results in a discontinuity in the saddle-
point parameters, as indicated by the vertical dashed lines
shown in Figures 3 and 4. For u > 0.5, the size of the
many-solution region shrinks as T decreases and vanishes
at a critical end point Te > 0, while for u < 0.5, as al-
ready said, this region persists at T = 0. These results are

-20
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f rs

α

Fig. 5. Replica-symmetric free energy frs as function of α for
u = 1 and T = 20. The arrow indicates the point at which
the thermodynamic transition takes place, i.e., where the free
energy of two distinct solutions of the saddle-point equations
intersect. This point correspond to the dashed vertical lines of
the previous figures. The symbol • points the limit of stability
of the replica symmetric solution.
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Fig. 6. Critical value αc at which the discontinuous thermo-
dynamic phase transition takes places as function of T for the
values of u indicated in the figure. The transition lines termi-
nate at critical end points Te, represented by the dashed line,
at which the discontinuity disappears.

summarized in Figure 6 where the transition point αc is
shown against the temperature T .

4.2 Stability analysis

In using the replica symmetric prescription to evaluate
the saddle-point parameters it is important to check that
the solution is in fact locally stable. An instability of
the replica-symmetric solution is determined by a sign
change in (at least) one of the eigenvalues of the matrix of
quadratic fluctuations around the replica-symmetric solu-
tion. Following the standard stability analysis [31] it can
be shown that the stability is determined by the eigenval-
ues of the matrix

(
∂2G0 −1
−1 α∂2G1

)
(32)

where ∂2G0 is the 1
2n (n + 3)-dimensional matrix of sec-

ond derivatives of G0(q̂ab, Q̂a, R̂a) with respect to its argu-
ments. Similarly, ∂2G1 is the 1

2n (n + 1)-dimensional ma-
trix of second derivatives of G1 with respect to qab and Qa.
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Fig. 7. Almeida-Thouless point αAT above which the replica-
symmetric solution becomes locally unstable as function of T
for the values of u indicated in the figure.

Requiring all the eigenvalues of this matrix to be positive
leads to the following condition (see [28,32] for a similar
calculation)

4η4

qq̂

∫ ∞

−∞
Dz {1 + 2H (Ξz) [Ξz − H (Ξz)]}2

< 1 (33)

where H (Ξz) is given by equation (31). Figure 7 shows
the Almeida-Thouless line αAT (T, u) for fixed values of
u. These results show that only the solution correspond-
ing to the larger value of 1/Q (upper branch in Fig. 3)
is stable against replica symmetry breaking and that the
instability sets in after the discontinuous transition takes
place. The instability points are indicated in Figures 3
and 4 by the black circles. Hence, the phase character-
ized by small 1/Q is everywhere unstable and so a more
sophisticated prescription, involving the breaking of the
symmetry of permutation in the replica space, is neces-
sary to describe correctly the saddle-point parameters in
this phase [26,27]. Nevertheless, about three decades of
research on mean-field versions of a variety of disordered
systems has shown that the replica-symmetric prescrip-
tion yields qualitatively correct results and in what follows
we will use it as an approximation to the correct, replica
symmetry broken solution.

5 Ecosystem structure

A common measure used to gain information on the struc-
ture of ecosystems is the relative abundance of each species
in the community. In particular, field ecologists had long
observed that most species of plants in a secluded com-
munity were relatively rare, while a few species were fairly
common [33], resulting in patterns that can be well de-
scribed by a geometric distribution [34] (see also [35]).
Similarly to the annealed case, see equation (19), the prob-
ability density that the concentration of a given species –
say xk – takes on the value x is defined by

Pk (x) =

〈∫ ∞

0

∏

j

dxj δ (x − xk)W ({xi})
〉

(34)

where W is the Gibbs distribution (6). Since all species
are equivalent we can drop the species index and write
Pk (x) = P (x)∀k. Evaluation of this quantity using
the replica symmetric prescription is straightforward and
yields

Prs (x) =
q̂1/2

π1/2η

∫ ∞

−∞
Dz

exp
[
− (

Ξz + xq̂1/2/2η
)2

]

erfc (Ξz)
(35)

with Ξz = η (∆ − z). In the zero temperature limit this
distribution exhibits a singularity (a Dirac delta) at the
origin x = 0, implying thus that a fraction of the species
are extinct in the stationary regime [15,16]. Such a sin-
gularity does not occur for nonzero temperatures – the
probability density (35) is everywhere a well behaved func-
tion of the species concentrations. In fact, Figure 8 shows
this probability distribution for the same parameters used
in the annealed case (see Fig. 2). The results are quali-
tatively very similar and become practically identical for
large T , as expected. This similarity supports our claim
that the replica symmetric solution is useful to draw a
good qualitative picture of the equilibrium properties of
the model, even beyond its stability domain. The main
difference between the annealed and quenched results is a
greater contribution to the community organization from
species with small concentration values in the quenched
case. For large α, however, the annealed scheme produces
divergent results and in figure 9 we show the results of
the distribution of species concentrations as predicted by
the replica symmetric prescription in this regime. The re-
markable feature of these distributions for large α is the
rapid decay at small concentrations (much faster than ex-
ponential), the leveling off at intermediate concentration
values and, finally, the resume of a rapid decay at very
large concentrations. This means that a few species are
uncommonly abundant and practically dominate the en-
tire community. Of course, this conclusion accords with
the large value of Q in this regime which implies a high
probability of finding that two individuals picked at ran-
dom belong to the same species.

The increase of the number of features of each species
results in a reduction of the effective diversity, in the sense
that only a few species are statistically relevant to the
ecosystem composition. This can be understood by noting
that the variance of the interspecies interaction strengths
(1) grows linearly with α, which means that the larger α,
the greater the odds of producing pairs of strongly coop-
erating species such that the strength of the interactions
among them exceed the self-restraint parameter u as well
as the disturbance of the fast noise. The diversity reduc-
tion observed in Figure 3 for large α is then a consequence
of the unrestricted growth of small groups of cooperating
species, the success of which drive the other species to
a marginal position in the ecosystem organization since
constraint (3) must be fulfilled.
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Fig. 8. Probability density that the abundance of a randomly
chosen species equals x in the replica-symmetric approximation
for u = 1, α = 0.5 and T as indicated. The dashed line is the
exponential distribution.
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Fig. 9. Probability density that the abundance of a randomly
chosen species equals x in the replica-symmetric approximation
for u = 1, T = 20 and α as indicated. The dashed line is the
exponential distribution.

6 Conclusion

The equilibrium properties of the model ecosystem ad-
dressed in this contribution are regulated by three control
parameters only. The ratio α between the number of fea-
tures p used to specify the species and the total number
of species N is the more important since it can be iden-
tified with the overall complexity of the species. Large
values of α promote the dominance of a few species lead-
ing to a regime of low diversity characterized by a very
large value of Simpson’s index, Q 
 1. The self-restraint
parameter u > 0 that models the competition between
members of a same species comes in second place. It can
be viewed as a cooperation pressure since for large u we
find Q ≈ 1 implying thus that all species contribute evenly
to the ecosystem composition. A nonzero value of the in-
traspecies competition parameter is crucial to obtain a
well-defined thermodynamic limit – setting u = 0 destabi-
lizes the ecosystem yielding Q → ∞. The third control pa-
rameter is the temperature T that measures the intensity
of the noise that disturbs the otherwise uphill evolution
of the species concentrations towards a local maximum of
the fitness functional. For large T we find Q ≈ 2 but the
probability distribution of the species concentrations dif-
fers markedly from the distribution characteristic of the

large u regime: it is an exponential distribution for large T
while it approaches a Gaussian of mean 1 for large u (see
Figs. 2 and 8). These three regimes are present in both
the annealed and quenched cases, except that in the for-
mer the competitive regime is characterized by Q → ∞.
We stress that in the context of replicator models the an-
nealed case is not a mere approximation to the quenched
case as it describes ecosystems for which the evolutionary
and ecological timescales coincide.

In the quenched case, we find a discontinuous phase
transition separating the low-diversity competitive regime,
which is everywhere unstable against replica symmetry
breaking, from the other two cooperative regimes, for
which the replica symmetric prescription yields the cor-
rect description. At zero temperature this threshold phe-
nomenon takes place at α = u, provided that u < 1/2.
In contrast to the effect of static noise, which smoothes
out that transition even for vanishingly small intensities
[16], the fast noise considered here actually promotes the
transition which can take place for arbitrarily large u, pro-
vided that T is large too (see Fig. 6). In the annealed case,
we find a similar situation with the transition point given
by equation (18) for all u.

Similarly to what was done in the neural networks con-
text [36], the ecosystem model can also be studied analyt-
ically for a generalized form of the interspecies interac-
tions, namely, J ′

ij = F (Jij) where F is an odd, nonlinear
functions of the Hebbian terms. In doing so the effects of
clipping and deterministic, as well as random, dilution of
the interactions can readily be considered (see [16] for the
zero-temperature analysis) and, as already pointed out,
the overall effect of the nonlinearity is to destroy the ther-
modynamic phase transitions altogether. However, while
such a generalized framework is appropriate to study the
case where the interaction strengths with intensity smaller
than a given threshold value are set to zero (this is an
example of deterministic dilution) it cannot be used to
study an asymmetric case in which, for instance, the in-
teractions are set to zero if they are cooperative (Jij < 0)
since F must be an odd function of its argument. A glance
at equation (5), however, is sufficient to realize that the
model with competitive interactions only leads to an un-
interesting situation in which a single species dominates
the entire ecosystem. Hence this result corroborates the
notion that cooperation is necessary to produce diversity
in ecosystems.

The physical interpretation of the noise term in the
generalized replicator equation (2) is of a migration flow
that randomly introduces and removes members of the
species, modeling thus the exchange of individuals be-
tween the ecosystem and its bounding environment. Ac-
tually, the effect of noise is more complicated than that
since the addition and removal of individuals must be such
that the total species concentration is unaltered. The main
point, of course, is that this kind of fast noise is the one
that permits the statistical mechanics analysis of the equi-
librium states of the ecosystem (see [4] for a similar study
of the Gaussian model). In the quenched case, this analysis
has revealed a rich phase diagram exhibiting discontinuous
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transition lines that end at critical end points. In addition,
the instability of the low-diversity phase to replica sym-
metry breaking shown in Figure 7 turns the continuous
spin model (5) into an exemplary model to study discon-
tinuous transitions between replica symmetric and replica
symmetry broken phases.
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PESP.
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